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SUMMARY AND DISCUSSION

During the current reporting period, our studies of
statistical energy methods of sound and structural vibration
analysis have been centered on three primary phases:

(1) radiation resistance of structures, (2) modal densities
of structures, and (3) noise transmission. Knowledge of
items (1) and (2) is necessary for the successful application
of the theory in practical situations; and noise transmission
appears to be one of the most promising areas in which the
statistical approach can be applied. These activities are
congruent with the original objectives of the investigations.

Considerable information has been compiled on the radia-
tion resistance or radiation loss factors for beams, simple
panels, orthrotropic plates, and built-up panels. The re-
sults of this phase 0f the study are summarized in Appendix
A. Further effort in this area will be directed toward more
precise determination of the ranges of applicability of the
parameters involved, designing of evaluation experiments, and

analytical studies of radiation loss factor for multimodal
vihration for shells of regolution.

Iin the area of noise transmission, a program of study
has begum in which the effect of structural shapes on noise
reduction will be evaluated. For equal contained volumes,
the noise reduction properties of one face (with different

geometric shapes) of a cubical will be studied analytically



and experimentally in all important frequency ranges. The
results thus far of this phase of study are sumamarized in
Appendix B.

The studies of modal density have thus far been concerned
with circular cylinders. An experimental arrangement has been
designed and set up for further evaluation of predictions that
have been reported in the literature. These experiments
should be completed in the near future, and the results will
be submitted for publication. Appendix C summarizes the ap-

proach and progress on modal density studies.

Franklin D. Hart
Project Director



APPENDIX A
RADIATION RESISTARCE
Charles J. Runkle

An analysis of the acoustically excited vibration of
structures leads to a consideration of the coupling between
the sound pressure waves and the induced waves in the struc-
ture. In a similar fashion, if one wishes to control the in-
tensity of sound emitted from & vibrating structure, a con-
sideration of the coupling between the vibration of the struc-
ture and the induced pressure variations in the surrounding
air is necessary.

Coupling can be characterized by a quantity y,la the
resistance ratio, which is a measure of the amount of power
rediated from the vibrating body as compared to the total
amount of power dissipated both by radiation to the surround-
ing fiuid and by mechanical losses within the structure.
Figure 1 illustrates the meaning of ) with reference to the
energy transfer which occurs in the steady-state vibration of
2 structure.’®

Since E is the input energy. ukE is the energy dissipated
to the surrounding fluid, and (1-p)E is the energy dissipated

within the structure, then

*Superscript numbers refer to the feferences listed at
the end of the respective appendix.

*2A11 figures in this and succeeding appendices appear
at the end cof the discussion.




uE

B TTE
pE + (l-p

The resistance ratio caa be \vritten1

U o= Rrad
! Rraa +wﬁ;ech

and since ns(R/wéu), then p can also be written

Tirad
"rad * "mech

The loss factor is related to the damping ratio by
%ﬂ = ©6,/¢., where the damping ratio is the ratio of the damping
coefficient to the critical damping coefficient, which occurs
when damping is that specific value necessary to cause the sys-~
tem to be critically damped.

The loss factor, n, for a plate can be determined by
measurceenits of reverberation time. The reverberation time
is the time, T, required for the energy content of the system

to decrease by 60 dB; therefore? n = 13.8/Tgw. In this case,

N 1s the loss factor for the entire system; i.e.,

M = Mpaé * "mech®

‘Then, N»aa and therefore n can be determined by using the

equation,,2

Sp/Sg = WHpTRN,q/27.6%2np¢,

From the abowe, it can be seen that an attempt to esti-
mate the degree of coupling hetween structural and acoustic

vibration will require knowledge &bout either the loss factors




or the radiation resistance and the internal resistance.
¥easurement of Tp. Sy, and Sp plus information about np will
give sufficient inforestion to determine the quantities, but
in the absence of the opportunity or time for experimental
work, theoretical considerations must be available.

The following portion of this report is concerned with
the radiation resistance. Results of compiling Rpgq for wvari-

ous structures and geometrical shapes are presented.

Beams

Developrent of mathematicai expressions for the determi-
nation of the radiation resistance comes about in seversal
ways. Lyon and Eaidanik1 developed an expression by repre-
santing the 2coustic space and the structure with an equi-
valent set of oscillators. Such development was based on
the following sssumptioas:

i, The oscillators are lincar systems.

2. The response of & single oscillator occurs in a nar-
rov frequency band centered at the natural frequency
of the oscillalor,

3. Interaciiom beiween the coscillators of the acoustic
field and the oscillators of the structure occurs
only in a nerrow iregucncy band of common natural
frequency. Response of the oscillators in 21l other
bands of frequency is negligible.

4, The oscillators are statistically independent so that

the total emergy of the system is then just the sum




of the individuval energies of each oscillator
(resonant modes are sufficiently separated in fre-
quency space, have small loss factors, n, and are
linear).

5. The acoustic field is reverberant in the sense that
the pressure spectral density can be treated inde-
pendent of position (i.e., the spectral demsity is
averaged over the volume of the field).

6. The structural vibration field is reverberant in
the same manner as the acoustic field.

The general expression £r the radiation resistance isl

2 .o
R.gq = (16/7)pck J_[e(glggz)ﬂ(;pg_z)dg,_dgz . (1)
s
Evaluation of this expression for an actual case requires

that the correlation, ¢(§1,§2) have the same form on the
surface of the gtructure &s at points removed from the surface.
This simplification restricts the results to structures of
small curvature with dimensions which are large compared to
the acoustic wavelength., It is further assumed that beam
modes are well separated iq frequency space.

Lyon and Eaidanikl applied this formulation to a simply
supported beam in an acoustic baffle. Figure 2 shows the

beae 2nd its dimenzicns. The resulls are as follows:
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1. (kp/k)<l (sbove coincidence) with gke>l. This 1s the
range of wavenumbers such that the bending wavelength im the
plate is greater than the acoustic.Waveleﬁgth.
a. For %ﬂ>1, where aukw[L-(kb/k)zll/z,

Rrgq 8 Spel1-(ky/k)2171/2,

b. For %a,q; Rpag & %sbckw .

2. (ky/k)>1 {below coincidence) with %kz>1. In this range
of wavenumbers, the bending wavelength in the plate is less

than the acoustic wavelength.

a. For %kv>>1,
Rpq~ Soe(k/k)2(1/ke) ([2-(k/K)21/[1-(k/k ) 233/ 2).

b. For %kw<1,

Rpgq = ce(k/kp)2eo/mad{1/(1-(k/k,)2]
+ (I, /2k) iog(kb+k)/(kb—k)).
3. k& k {in the mneighborkood of coincidence) with
%kz>l, This is the rapge of wavenumbers for which

the acoustic wavelength approximately equals the bend-

ing wavelength.

2. For gkw>>1, Rppq = sne(xr) /2 37,
i

i
b. For ﬁkw<1, Resd = zspckw_
1 1
4. §ke<i with gkw<l.
12
R, 60dd) » Spelk/iy,) (wx/2nik) {1/]1-(k/kp)"]
+ (kp/2k) log(ky+k)/(kp-k)}




and
R.,g(even) = Spc(kzkw/zﬂ){l/fl-(k/kb)zl
- (k,/2k) log(k, +k)/(k -k)}

The resulting expressions for Rr.aqd are approximate solu-
tions of eq. (1). The various restrictions placed on wave-
number and hence wavelength, and the restrictions placed on
the size of the panel im relation to the acoustic wavelength
&re simply those which will make possible approximate solutions
of eq. (1). And while it should be noted that these expres-
eions for R, s have considerable scientific value, the en-

gineering usefulness is relatively limited.

Flat Plates

in 1954, W, Westphal developed equations for the power
radiated from fiat plates under various eonditions.3 Froa
these results for the power radiated from flat plates, the radi-

ation resistance can be calculated by noting that?

Roaq = Secy, (2)
where the radiation factorgs Y = 2P/pc8;2. Hence,

R, ~ 2P/52
rad *

Westphal's results are oxpressed in terms of power radiated
per unit of area; therefore, for am infinitely 1arge plate
with
1., A homogeneous material whose thickness is small in
reiation to the bending wavelength
2. Small damping vhich can be expressed in terms of a

complex modulus




3. Traveling, plane bending waves:
the power radiated is

vhere the radiation factor is dependent on damping,

y = wBg/c(B3 + ad).

The quantities B3,a3 are the real and imaginary parts of the
vavenumber in the direction perpendicular to the plate. They
are related to Bl,al, the real and imaginary parts of the
vavenumber in the direction of bemnding wave propagation on the

plate by

2 22 2
G3 = 048y/P3

1 /779, 2, .2 2.2 .2.2
HE %E§w2/°2)+°¥“5§3 » 30 /e 1ei-p11% 1 40le]

where By = wagfc and &3\ = 0.115D. From this, the radiation
resistance resulis as

2 2
Rrad = ﬁcSm93/'c(83+ﬂ3).

4 plot of v for various values of D follows in Figure 3.3

This figure illustrates the hehavior of Reaq 28 2 function
of D.

For the undamped case (alga2=0), Rrad is

Rpgq - PeSUcBy = peSi T = Tag7®) = pe8//T - (1/ig)Z,

for ig2X,and R, .=0 for jp<i.
An analysis of the radiation produced by means of stand-

ing waves in an infinite plate yields
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Rpgq = pc8/A/1 = (n1/28)2 - (n,3/26)2

for cases of the subdivision on the plate being larger than
the acoustic wavelength at a given frequency. And Rpgq~0
for cases of the subdivisions on the plate being smaller than
the acoustic wavelength.

¥estphal goes on to establish an effective radiation factor
for the case of piate vibration produced by a band of excita-
tion fregquencies. Thisg result, however, is most useful when
used for experimental determinetion of the radiation factor
and, hence, the Rrad‘ In fact, this result wvas used to ob-~
tain experimental values of the radiation factor in West-~

phal’s work.

Orthotropic Plates

The sound power radiated from infinite orthotropic
plates has beén'studiedss and from this work informatiom
regarding the radiation resistance can be deduced.

The orthetropic plates studied are those plates that
possess different bending strengths in different directions.
This differsnce ia bending strengths may be due to corruga-
tions or ribs that rur in one direction. Such characteris-
tics may also resull from a2 directionality in stiffness of
the material (wood would be am example). Ribbed plates have
also been invegtigated, bhut that case:.which will be considered

later. involved the ribs formipg a grid or grill.7
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The expressions developed for the sound power radiated
from infinitely large orthotropic plates were derived from
the differential equation of velocity. Such results are re-
stricted by the following assumptions:

1. The flexural wavelengths in the plate must be greater
than the distance between the inhomogeneties of the
plate.

2. Ribs or corrugations run in one direction only.

3. Damping is smail and can be considered constant,
independent of dixrection.

4. The excitatior is a point force.

From expressions for the radiated power,6 by using the
radiation factor, v, due to K. Gosele,5 eq. (2) can be used
to obtain the radiaztion resistance. The results are nxpres-
sions in three frequency ranges:

1. k4<(wzm/Bx), which means that the largest bending

wavelengths in the piate are smaller than the lower

critical vavelength in the surrounding medium.

Rraq = (32/7)(5een/c2o)/ByBy (3)

2. (wzm/Bx)<k4<(m2m/By). This range of frequency in-
cludes bending wavelengths in the plate which are
greater than the lower critical wavelength in the
surrounding mediue in one direction, but less than
the upper critical wavelength in the surrounding

medivm in the other direction.
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2 2
R..q ® Socl/m )./"""”“"‘“'[fgl/fg2 %n(4f/fgl)]

3. k4>(w2m/B,). In this fange all wavelengths of the
bending waves in the plate are greater than the up-
per critical wavelength in the surrounding medium.

Rpesa ® Soc.

Thus, &s compared to simple plates that have one criti-
cal frequency, orthqtropic plates have two critical fre-
gquency values. One will be produced by the bending strength,
By, in the largest stiffness direction and the other will
be produced by the bending strength, By, in the smallest
stiffaness direction. And obviously if szsy, the plate is mot
orthotropic. In such cases, eq. (3) reduces toc a form com-

parable to previcus results for fiat plates.

Ribbed Panels

Siqgle-mode Vibration

The radistioa resistance of ribbed panels has been in-
vestigated.7 The study began on the same fundamental foot-
ing as the work dome on beams (see the previous section on
beams). The geaneral cquation for the radiation resistance

(see eg. (1)) serves as the "master" equation from which

specific results are developed. Also it should be noted that
the assumpticns and simplifcations made in the determination
of Rrad for the beam still apply.

The following results are valid for a single-mode vibra-

tion of a finite, simply supported, baififled panel. These re-

aults are preserted as being the dominant terms in the evalu-

ation of ea. (1) in each frequency range,




(kb/k)<1 {above coincidence)

R.aq % Soc[1l-(ky/k)2]-1/2

kp#= k (in the neighborhood of coincidence)

1/2 )1/2]

Rogq = (Spc/3/M [k /Ky /2 + (nxd/ky
(kb/k)>1 (below coincidence), with

a, (kby/k)>1 and (kbx/k)<l”

Soc(k/ky )2 1 + ro2-x2)y /62 3

5%

[(kﬁ-ki)/kby]

x
Rad ~ kb

b. (kbx/k)>1 and &by/k)<1°

Spc(k/ky)Z 1 + [(e2-k%) k2 1

kL Loy el 372

rad

{kp/K), (Epy/K}, (ko/k)<<l (well below coincidence)

vith gké, kb1,

~ (8pc/mIK2/ (K, Kk, )2
Rrad bx"by

1 1
=ki, =Zkh<<l
2 2

a. For odd-odd modes of wvibration,
B = - - 1 o~
Rpgd = [(326c/mk?/{ky Ky )91{1 + Of {zke)“+(5kh}*]]

b. For even in the x-direction and odd imn the y-
direction,

ec . 2, 24,1, ,,2 1,42
Roaq * (32pc/3m)[k"/ (K K o)"]1(gki)“[1 + O(zkh)“]
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¢. For even in the y-direction and odd in the x-
direction,

2 24 (1en) 2 1 1)2
R 9% = (320e/3m) [k%/ (kykpyy) ©1 (zXR) °[1 + 0(3kR) ]

d. For even-even modes of vibration,

RS = (325¢/15m) (k2/(k, xkby)z] (,}k:.)z(%kh)z

6. %kh<<1 and %k£>1, which corresponds to long, narrow

paneois and implies that kby/k)>>1.
2, For odd modes in the y-direction,
iéoeka/kgy, (kpx/K)<1

RO
(16pc/mK2/ (ky Ky )2, (i, /K)>1

radﬁﬁ

b. For even modes in the y~direction,

( a2 Y elen)2
I (4pck¢/3kby)(§kh), ’ (kb,/k).d
rad  } 2 92 1 2
iﬁlﬁac/Sﬂkbxkby)(Ekh) o (Kpye/K)>>1

Hulti-mode Vibration

The mathematical expressions previously given for the
single-mode radiation resistance of panels have limit§d value

in the engineering world, since muliti-modal vibration‘occurs >

acst I

of the radiation resistance of panels whose vibration is re-

verberant faliow.7

Rraq = Socl(Mho/S)g;(2/2,) + (Prhp/S)gy(f/fy)]

: i 1
in the range, f<fg with ﬁk&, §kh>1.
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/2

Reaq = Socl wnp) ™2 + mipt/?y,
1

at the point, f=1 for Ekig %kl»l9 and

gt
Rpaq = Secll - (£/1)1°1/2,

for f>f, with %x&, %kh>1, and where

(amd) (1-202)/a1-0231/3,  1ege
gl(f/fg) = 1
0 » T3ty

1 (1-02)¢w51+0)/(1-a)] + 2a

N ———————

(2m?2 (1-a2)372 9

Sz(f/fg) =

P. = 2(i+h), and @ = (f/fg)l/z.

For the range, ki, zkhe<l,

R_ 4 = Spc(4/1%) (Rpap/s) (2/2)1/2.

In the determinpation of these expressions for radiation
resistance, the contribution from even-even, odd-even, and
even-odd modes was neglected as being small compared to the
contribution due to odd-odd modes. It was also assumed that
kbia kbh>>ﬂ,

Below the critical frequency, £<fgy it has been noted
that the radiation resistance is directly proportionai to the
perimeter of the pane1.7 Thus the conclusion is drawn that
a ribbed psanel cen be treated in the same fashion as an un-
ribbed panel, ALl sccount can be made for the effect of the
ribs on the radiation output by redefining the perimeter.

Hence, for a ribbed panel, the radiation resistance will be




increased by a2n amount

»ibs panel panel
(P +BPL /PL

where PEiP® {5 twice the total length of the ribs and ppanel
is the perimeter of the panel. However, when this technique
ig used to estimate the radiation resistance of a ribbed panel,
the spacing between the ribs must now be restricted with re-
spect to the acoustic wavelength in the same way as the di-
mensions of the entire umnribbed panel. This wmeans that
distance between adjacent ribs must be large when compared

to the acoustic wavelength. The fzctor by which this distance
wust be larger than the acoustic wavelength in order for these
results to be reasonably accurate has not beea discussed, but

this is under current ccnsideration.

Cylindrical Shells

Qualitative consideration of the "radiation properties”
of cyliadrical shelis has been carried out,8 but currently
ro useful engineering results exist for predicting the radia-
tion resistance preoper for mmltimodal vibration. This is an
area toward which future efforts of this research activity

will be directed.

Conclusionrs

The true value of being able to determine R, , &na-

lytically should be stated. From the equ&tion,7
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Sy(0)/8,(#) = '(w)p(w),

where T'(p) = [2ﬂznp(w)f"]<c/¢) and n(®w) = Rpgq/(Rugq+Ryach)
the relationship between the motion of the structure and the
motion of the acoustic medium is established. Now knowing

either S, or S _, the other can be determined provided I'(w)

p’
and u(w) can be found.

I'{w) depends or the variables, c,p, M, and np(m); c, P,
and ¥ are eaéily determined; and np(w), the modal density of
the structure; is known from flat platesg and cylindersg'l0
in apalytical form. Hence, only the resistance ratio, a(w)
remains. And if R, ,; can be computed analytically, oaly Rnech
needs to be determined experimentally. R, ... {in truth,
R ad*Puech
reverberation time, Tg, of the structure, which is relatively

) can be determined experimentally by measuring the

simple to do.
If R,.,q caanot be evaluated analytically, them both S,
amd Sp must be known. This will require the experimental

determination of the spectral density, S, o S,, and the re-

p’
verberation time. Experimental determination of the spectral
densities is neither as simple nor as inexpensive to perform
as is determination of the reverberation time. Therefore,

the ability to predict R, 4 analytically is of much value in

both time and woney.
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AND REFERENCE SHOWN
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Notation

characteristic length in the x-direction of an in-
finite plate subject to standing wave vibration.

characteristic length in the y-direction of an
infinite plate subject to standing wave vibration.

orthotropic plate bending stiffness in the x-
direction.

orthotropic plate bending stiffness in the y-
direction.

speed of sound in the acoustic medium.

- damping coelficient.

critical damping coefficient.
damping per wavelength.

energy.

frequency (cps).

critical frequepcy of the plate.
lower critical frequency.

upper critical frequency.

width of the plate.

mean acoustic wave number in the frequency band
of excitation.

na/Z, mean wavenusber of the bending vibrations im
the structure.

mean wavenumber in the xz-direction.
mean wave number in the y-direction.
length of the beam or plate.

mass per unit of aresa.

lunped mass of the system




a(

B(

)

)
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modal density of the structure.

modal density of the chamber in which the plate
is tested. '

0,1,2,3,...,

0,1,2,3,.--,

pover radiated from the structure,

regsistance.

mechanical or internal resistance.

radiation resistance.

surface area of the structure.

spectral density of the acceleration of the structure.

spectral density of the acoustic pressure in the
mediuvm surrounding the structure.

reverberation time of the systesm.
reverberation time of the test chamber.
mean square velocity of response on the structure.

velocity of response at the point of force ap-
plication.

width of the beam,.

poesition vector to a point on the surface of
the structure.

impedance at the point of force application.

imaginary part of the complex wavenumber in the
( )-direction.

real part of the complex wavenumber in the ( )-
direction.

radiation factor,

loss factor.
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Nmech = mechanical or internal loss factor.

Nead = radiation loss factor.

A = acoustic wavelength.

A\g = bending wavelength.

Xp = coincidence wavelength of the plate.

2 = resistance ratio.

g = ambient density of the acoustic medium.

#(xy,Xp) = correlation of the structural vibration field.

?(51952) = correlation of the acoustic field.

® = circular frequency (radian/sec)

0o = resonant frequency of a single mode.

mﬁ = critical circular frequency.
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APPENDIX B

LOW-FREQUERCY NOISE REDUCTION
J. Ronald Balley

The interaction of acoustical and structural vibrations
is important in the field of noise reduction. In this paper,
the noise reduction in & sprail pentagonal enclosure with two
flexible walls is studied in the low-frequeancy range where both
the panel amd the interior volumes are stiffmess controllied.
This is the first phase of a statistical approach to noise
reduction in all frequency ranges.

Consider the enclosure shown in Figure 1. The "roof"
pasels are flexible and the enclosure is rigid. Exposure
tc an externmal scund pressure, P, will resulit in an internal

pressure, P, given by1

where X is the voluwm® dispiacement due to P and Cb is the
acoustic compliance; Cp =~ Vb/ﬁcz, The volume displacemsnt
can be calculated by considering & uniformly loaded flat

rectangular plate with clamped edges, as illustrated below.

+
Py | A v }L l

f
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The displacement is given byz
w = P(22-x2)2(p2-y2)2/24p(atibt) .

The volume displacement is thus

a b ab
X = I I w(x,y)dxdy = 4J Iw(x,y)dxdy.
-a -b 00

Substituting 2pnd integrating gives

x = 32PapY/675D(ad+bd) .

]

)
(4]
(42

)

/& = r, Then,

= = 3202%:9/875n¢2..r%)

Since them are two flexible panels, the total volume dis-

placement is

X = 2x = 64Pa%r5/673D(14rd) .

25
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Let 64r?/675(1:r%) = F(r). Then

X = PaSrr(r)/D. (2)

F(r) versus r is plotted in Figure 2.

The interior volume is

¥, = (hcb/2) + cb, (3)

but ¢ = zt/a:—hzc r = b/a, and letting s = h/a, equation (3)

canr be written,

vy/rad - (8182 + 4(1-sD)] = F(a). (40

Figure 3 is8 a plot of F(s) versus s. Now the volume compli-

ance can be wxlitten9

2 3 2
Cb = vb/pca = ra F(s)/pc‘ {(5)

Substituting (2) and (5) into (1) gives

Py = Paaoc:F(r)/DF(s)
or

P/Py, = DF(s)/23pciF(r),

where D ~ 15 ppcit° amd ¢, = VE/o(i-0%).

Let K = t/’a,
FR = 20 log[EF(s)/12(1-Gz)ac§F(r)K3], (6)

where E is Young's modunlus; F(s) is the height ratio fumnc-
tion (see Figure 3); o' is Poisson’'s ratio; p is the density

of air; c, is the velecity of sound im air; F(r) is the
a

—_ — -
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sspect ratio function (see Figure 2); and K (thickness
ratio) = t/a.
Figure 4 is a plot of noise reduction . vor a box with di-

mensions a h = 2//2, ¢ =vZ 2, eand b = 2/2 a.
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APPENDIX C
MODAL DENSITY OF THIN CYLINDRICAL SHELLS
David K. Miller

The work that has been done thus far on modal densities
of thin cylindrical shells, as presented herein, is based on
V. V., Bolotin's paper, "On the Density of the Distribution of
Natural Frequencies of Thin Elastic Shells,"1 and Manfred
Heckl's paper, "Vibrations of Point-driven Cylindrical Shells."2
Both writers presented a derivatiom of expressions for the
modal density of thin cylindrical shells. Heckl dealt with
the modal density of a finite simply supported cylindrical
shell and cobtained the expressions:

For %/>0,

AR/AY = 1/4a8 = /3(4/2h),
and for ¥<0,

AR/AY = [%ﬂ + arc sin(2 -1)](L/4maB),

where £ is the cylinder length; a, the cylinder radius; h,
the thickness; B = h/2/3 a; and ¥ is the dimensionless fre-
quency given by
¥ = wa/cy = ma/o/E,

where w is the exciting frequency; p, the demsity; and E,
the modulus of elasticity of the cylinder material.

Bolotin, on the other hand, derived a general expressioa
for any thinm elastic shell, which he then applied to the
specific case of a thin cylindrical shell. Bolotin’s expres-

sions for the modal density are:
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dN(Q)/d0 = (a,3,/4™) (ob/D)/ 21, (Rp/0) 21,

where for the specific case of a cylinder, (Qp/Q) = ¢ and

X = 0. Hence, for a<l,

H,(2,0) = (2/n/T+a)K[/2a/(1+a)],
and for a>1,

Hy(a,0) = (ry/T/e)K[/(T+a)/2a],

where a, and a, are‘the dimensions of the rectangular shell
surface; p, the demsity; h, the thickness; D, the plate
stiffness; a, a dimensionless frequency parameter; and K,
the eleptic integral of the first kind.

It was first felt necessary to determine to what extent
the equations obtained by Heckl and Bolotin were comparable.
This was accomplished by converting Bolotin's notation
to that of Heckl, and moting that ¥/= l, a; = &, and a, = Wa,

2
which reduces Bolotin's general expression to:

bw/aY = /3 (4/2k) (1-n2)YV/ 28, 5,0 .

The approximate values for Hl(%,O) were determined by
means of Fig. 2 of Bolotin's paper, which is a plot of nl
versus ¥ forX =0. In this way it was possible to plot the
results of boith Heckl and Bolotin for a range of 4 values
(see Figure 1). It may be noted that for ¥/>1, Heckl's modal
density is /3(1/2h), while Bolotin's converges to
/5(&/2h)(1-p2)1/2. Hence, for frequencies above the ring
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frequency (¢#>1) the results of both papers appeaf to be in
agreement. However, below the ring frequency there appears
’to be considerable difference between the two equations.
'ébnce, this will be the range of primary interest in further
work.

As a next step, an analytical review of Heckl's deriva-
tion is being undertaken to determime, if possible, the reason
for the discrepancy in the modal density expression for fre-
quencies below the ring frequency. This analysis is not as
yet complete; however, in the analysis it was noted that Heckl
introduced an approximate frequency equation in order to ob-
tain a perfect square term for 42. The approximation was as

follows:

42 = [62(n2+62)"1 . B(k2.62)]2,

where B « (h/2}/3 a and G - mna/4. It is evident from Heckl's
derivation that this approximation is based on the assumptions
that p~0, and that the terms, -Zn2g -2628 + 82, may be neg-
lected in the final frequency equation. To get some idea of
the meaning of this assumption, a set of cylinder dimensions

chesen {2=2_.25". h=0.062", and %=36"), and with this data

it was possible to plot Heckl‘'s approximate value for-ﬂz, as
well as a plot of the approximate value plus the terms that
were neglected for various values of n (n =<% nuaber of nodes
in the circumferential direction) using m as a parameter,
Where k-an/4, u-1,2,3,--+ is the wavenumber in the axial di-

rection (see Figure 2). Heckl stated that the approximation
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is good except where 62 = (nzmz)za, and that this range is
fairly small. It was found that the above equality is nearly
satisfied, for the range of values chosen, in the vicinity
61 n=5. It may be noted that although this range is fairly
small it seems to have its greatest effect for values of
#<1, whereas for ¥>1 the values of the approximation are seen
to converge with the actual values. Heckl also stated that
his approximation may lead to frequencies which are as much
as 40% too high in this range, and this is nearly the case
for the w~14 curves shown in Figure 2. Since this error seems
to be fairly important below the ring frequency, it may be
concluded that, since the error in the frequency is on the
high side, the expression which Heckl derived for the modal
density is somewhat lower than would actually be - the case for
frequencies lower than the ring frequency. The exact effect
of this spproximation omn Heckl's modal density expression has
not been determined, but it would seem that it has lowered
the expression somewhat, although work is still in progress
to clarify this matter. An analysis of this sort on Bolotin's
paper also will be made at some future date.

Alsc in progress at this time is an evaluation of modal
density predictions presented by Heckl and Bolotin by experi-
mental means. Thus far the necessary test equipment has been
obtained and set up (see Figure 3). It is desired to excite the
test cylinder with 2 constant input force,Aaad to measure the_~

output acceleration at various poinits on the cylinder. Using
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the level recorder it-is hoped that it will be possible %o
count the resonate peaks up to the vicinity of the ring fre-
quency, and in this way determine the modal density experi-
mentally.

A stainless steel cylinder also has been acquired for
the initial test work. The dimensions of the cylinder are
2s follows: 1length, 36"; thickness, 0.065"; outside diameter,
&.5". This cylinder size was chosen because it has a ring
frequeacy of about 13,000 Ez, which is within the range of
the oscillator, snd because the cylinder size is in the range
between the two cylinders used by Heckl in his experimental
work.

Work has been done to evaluate differemt mounting meth-
cds for the pick-up accelerometer. Since it is pot desirable
$o drill holes in the cylinder to stud mount the accelerometer
&t the several locations to be used, various types of double-
sided tape, as well ags the wax supplied with the accelerometer,
have been investigated with respect to their response as com-
pared with that of 2 rigid mount. It has been found that on
& flat surface the regular double-sided Scoich tape is a very
gocd mounting method, as is the’wax. Both methods provide anm
acceleromater response curve that is quite close to the stud
mounted curve. Eowever, ¢ue to the curvature of the cylinder,
it appears that the wax mounting offers the best solution; at

least this will be the metbod tried initially.
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